Welding supplies top provider

Welding supplies top provider

Some advices about welding equipment, MIG and TIG welders, plasma cutters. When appearance counts, TIG welding creates a high quality, clean weld that is far less likely to distort the metal by using a nonconsumable tungsten electrode. There is no need to worry about splatter because it only uses the necessary amount of filler metal needed in the welding puddle, making for the highest quality weld in every respect. However, TIG is fairly specialized and requires a good deal of training in order to master it—so make sure any TIG welder purchase is paired with a plan to take welding classes. Instead of the point and shoot simplicity of MIG welding, TIG requires the use of a foot pedal to regulate the welding process. A filler rod that is separate from the torch that must be fed in gradually. Many professional welders prefer TIG because it can weld a wide variety of metals and because of the versatility of argon gas used during TIG welding. There is no slag to block the view of the weld puddle. Argon gas can weld any metal at any thickness with TIG welding, and therefore there is no need to change the gas depending on the project.

Some TIG welders advices: how to become a better welder and how to select the best welding equipment. Use the smallest tungsten that will get the job done. Use the smallest tungsten to get the job done. …within reason. Another way of saying this is don’t just use a 1/8” electrode for everything. There are jobs where a 1/8” electrode is great like for welding 3/16” thick aluminum. But what if you are welding on the edge of a .030” turbine blade? A .040” electrode will be plenty to handle the 15 amps and will give much better starts than even a 1/16” electrode. Too large an electrode can cause an erratic arc and contamination…and A bad start where the high frequency tries to arc up inside the cup and off the side of the tungsten can easily melt off a thin edge and scrap an expensive part. 2% thoriated or lanthanated tungsten electrodes hold up at high amperage better than most all other electrodes. When welding at higher amperages, often times you can use one size smaller electrode by using 2% thoriated or lanthanated. And that is a good thing.

One of the “cardinal sins” that almost every shop commits is over-welding. This means that if the drawing calls for a 1/4″ fillet weld, most shops will put down a 5/16″ weld. The reasons? Either they don’t have a fillet gauge and are not exactly sure of the size of the weld they are producing or they put in some extra to “cover” themselves and make sure there is enough weld metal in place. But, over-welding leads to tremendous consumable waste. Let’s look again at our example. For a 1/4″ fillet weld, the typical operator will use .129 lbs. per foot of weld metal. The 5/16″ weld requires .201 lbs. per foot of weld metal – a 56 percent increase in weld volume compared to what is really needed. Plus, you must take into account the additional labor necessary to put down a larger weld. Not only is the company paying for extra, wasted consumable material, a weld with more weld metal is more likely to have warpage and distortion because of the added heat input. It is recommended that every operator be given a fillet gauge to accurately produce the weld specified – and nothing more. In addition, changes in wire diameter may be used to eliminate over-welding. Looking for the best MIG Welders? We recommend Welding Supplies Direct & associated company TWS Direct Ltd is an online distributor of a wide variety of welding supplies, welding equipment and welding machine. We supply plasma cutters, MIG, TIG, ARC welding machines and support consumables to the UK, Europe and North America.

And another tip is use the old school type of collet body(not gas lens) and one size smaller cup than you would use for steel that still provides good shielding. A smaller old school (not gas lens) TIG cup confines the shielding gas envelope to the puddle so that arc energy is not wasted in the form of frosty cleaning action outside the weld. A lot of Old timers use the small cups, they just don’t know why. Pay attention next time you weld aluminum and use a small cup and then turn the shielding gas flow down to around 12-15 cfh with a #6 cup and see if things don’t quiet down a bit.

Flat-Position Welding Increases Welding Speed : It’s common knowledge that welding in a horizontal position will be the easiest and fastest way to weld. A flat position is not as taxing to maintain and the welding puddle will stay in place. Take some time to evaluate each project before beginning in order to make sure the majority of welds can be completed in this position. If a job calls for vertical welding, see this article about vertical welding. Core Wire Feeder Increases TIG Welding Speed: For professional welders hoping to speed up TIG welding, a core wire feeder will add filler metal through an automated process. Watch this video on how it works. This enables welders to work with both hands and to maintain a constant flow of wire into the welding puddle. Ed Craig at the Frabricator writes about the wire feeder process first developed in Europe, saying it is “suitable for all-position welding on materials of any thickness, the process addresses traditional GTAW limitations and can enhance both manual and automated TIG weld quality and productivity.”

Always know what gas your wire requires — whether it’s 100 percent CO2 or argon, or a mix of the two. \While CO2 is considerably cheaper than argon and good for penetrating welds on steel, it also tends to run cooler, making it usable for thinner materials. Use a 75 percent argon/25 percent CO2 gas mix for even greater penetration and a cleaner weld, since it generates less spatter than straight CO2. Here are some suggestions for shielding gases for common types of wire: Solid Carbon Steel Wire: Solid carbon steel wire must be used with CO2 shielding gas or a 75 percent CO2/25 percent argon mix, which is best used indoors with no wind for auto body, manufacturing and fabrication applications. Aluminum Wire: Argon shielding gas must be used with aluminum wire, which is ideal for stronger welds and easier feeding. Stainless Steel Wire: Stainless steel wire works well with a tri-mix of helium, argon and CO2.

The arc is shaped like a cone, with the tip at the electrode and the base on the metal being welded. The closer the electrode is held to the metal, the smaller the base of the cone — but as you pull the electrode farther away, the base (and puddle) gets larger. If the puddle gets too large, gravity will simply pull it away from the base metal, leaving a hole. This is why thin-gauge metals are especially challenging for beginners. Perhaps the most important skill needed for TIG welding is moving the torch in a controlled manner, with steady forward movement, while keeping the gap between the tip of the electrode and the base metal consistently small — usually in the range of 1/8 inch to 3/16 inch. It requires a lot of practice to precisely control the arc length, keeping it as short as you can without allowing the electrode to touch the base metal or filler rod. Source: https://www.weldingsuppliesdirect.co.uk/.